

Semester II

	MATERIALS SCIENCE	Category		gory:	: BSC		
U21PH201	(Common to all branches except BME)	L	T	P	J	C	
	(Sommon to an branches except BML)	2	0	0	0	2	

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To gain the knowledge of conducting and semiconducting materials
- To understand the concepts of magnetic, dielectric and optical properties of materials
- To enhance the knowledge of new engineering materials

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Demonstrate the electrical characteristics of conducting materials (Understand)

CO2: Interpret the properties and types of semiconducting materials (Understand)

CO3: Compare various types of magnetic materials for engineering applications (Understand)

CO4: Explain the fundamental concepts of dielectric and optical materials (Understand)

CO5: Examine new engineering materials for industrial applications (Understand)

CO-PO MAPPING:

POs	PO1	PO2	РО3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
			1											
CO1	3	2	-	-	= =	1	-	-	-	-	-	1		
CO2	3	2		-	٠.	1	-	-	-	-	-	1		
CO3	3	2	82	-	•	1	-	-	-	-	-	1	14	-
CO4	3	2	-	-	-	1	-	-	-	-	-	1		
CO5	3	2	82	-	-	1	•	-	-	-	-	1		
СО	3	2	-	1.	-	1	-		-	-	-	1		
Correlation	levels	S:	1: Sli	ght (Lo	ow)	2: M	oderat	e (Med	dium)		3: Sub	stantia	l al (High	1)

SYLLABUS:

UNIT I CONDUCTING MATERIALS

6

Classical free electron theory – Expression for electrical conductivity and thermal conductivity – Wiedemann - Franz law – Drawbacks – Fermi distribution function – Density of energy states in metals

UNIT II SEMICONDUCTING MATERIALS

6

Intrinsic and Extrinsic semiconductor – Carrier concentration in n-type semiconductor – P-type semiconductor(qualitative) – Applications of semiconductors – Solar cell – LED – Hall effect and its experimental determination

Dr. S. ANANTH
Professor and Head
Department of Physics
Kpr Institute of Engineering and Technology
Colimbatore - 641 407

UNIT III MAGNETIC MATERIALS

Origin of magnetism - Dia, para and ferro magnetic materials - Domain theory - Soft and hard magnetic materials - Magnetic bubble memories - GMR sensor

UNIT IV DIELECTRIC AND OPTICAL MATERIALS

Dielectrics - Types of polarisation - Electronic polarisation - Dielectric breakdown - Ferroelectrics -Applications of dielectrics - Classification of optical materials - Nonlinear optics - Applications

UNIT V NEW **ENGINEERNG MATERIALS** AND CHARACTERIZATION 6 **TECHNIQUES**

SMA - SiC - GaN - Rheological materials - Nanomaterials - Synthesis (Ball milling and CVD) -Quantum dot, quantum wire and quantum well(qualitative) - Characterisation techniques - Powder XRD(qualitative) - SEM

Contact Periods:

The second secon

Lecture: 30 Periods

Tutorial: - 0 Periods

Practical: - 0 Periods

Project: - 0 Periods

Total: 30 Periods

TEXT BOOKS:

1. Wahab M A, "Solid State Physics: Structure and Properties of Materials", 3rd edition, Narosa Publishing House, Chennai, 2018

2. Marikani Ā, "Materials Science", 1st edition, PHI publishers, Chennai, 2017 REFERENCES:

- 1. Pillai S O "Solid State Physics", 9th edition, New Age International Publishers, New Delhi, 2020
- 2. Bangwei Zhang, "Physical Fundamentals of Nanomaterials", Chemical Industry Press, China,
- Joginder Singh Galsin, "Solid State Physics An Introduction to Theory", Academic Press, India,
- 4. https://nptel.ac.in/courses/108/108/108108122/
- 5. https://nptel.ac.in/courses/113/105/113105081/

EVALUATION PATTERN:

	Conti	nuous Internal As	sessments				
Assessment I (100 Marks)		Assessme (100 Mar		Total Internal	End Semester		
Individual Assignment / Seminar / Mini Project / MCQ	Written Test	Individual Assignment / Seminar / Mini Project / MCQ	Written Test	Assessments	Examinations		
40	60	40	60	200	100		
	То	40	60				
			100				

Dr. S. ANANTH Professor and Head

Department of Physics Kpr Institute of Engineering and Technology Coimbatore - 641 407.